Quantum control of atomic systems by time-resolved homodyne detection of spontaneous emission
نویسندگان
چکیده
We describe the light-matter interaction of a single two level atom with the electromagnetic vacuum in terms of field and dipole variables by considering homodyne detection of the emitted fields. Spontaneous emission is then observed as a continuous fluctuating force acting on the atomic dipole. The effect of this force may be compensated and even reversed by feedback.
منابع مشابه
Coherent Control of Quantum Entropy via Quantum Interference in a Four-Level Atomic System
The time evaluation of quantum entropy in a four-level double- type atomic system is theoretically investigated. Quantum entanglement of the atom and its spontaneous emission fields is then discussed via quantum entropy. It is found that the degree of entanglement can be increased by the quantum interference induced by spontaneous emission. The phase dependence of the atom-field entanglement is...
متن کاملQuantum control of atomic systems by homodyne detection and feedback
We investigate the possibilities of preserving and manipulating the coherence of atomic two-level systems by ideal projective homodyne detection and feedback. For this purpose, the photon emission process is described on time scales much shorter than the lifetime of the excited state using a model based on WignerWeisskopf theory. The backaction of this emission process is analytically described...
متن کاملQuantum control by compensation of quantum fluctuations.
We show that the influence of quantum fluctuations in the electromagnetic field vacuum on a two level atom can be measured and consequently compensated by balanced homodyne detection and a coherent feedback field. This compensation suppresses the decoherence associated with spontaneous emissions for a specific state of the atomic system allowing complete control of the coherent state of the sys...
متن کاملEntanglement of an Atom and Its Spontaneous Emission Fields via Spontaneously Generated Coherence
The entanglement between a ?-type three-level atom and its spontaneous emission fields is investigated. The effect of spontaneously generated coherence (SGC) on entanglement between the atom and its spontaneous emission fields is then discussed. We find that in the presence of SGC the entanglement between the atom and its spontaneous emission fields is completely phase dependent, while in absen...
متن کاملRetroactive Quantum Jumps in a Strongly Coupled Atom-Field System
We investigate a novel type of conditional dynamic that occurs in the strongly driven JaynesCummings system with dissipation. Extending the work of Alsing and Carmichael [Quantum Opt. 3, 13 (1991)], we present a combined numerical and analytic study of the stochastic master equation that describes the system’s conditional evolution when the cavity output is continuously observed via homodyne de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008